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In this paper we study the acoustic scattering between two flat-plate cascades, with
the aim of investigating the possible existence of trapped modes. In practical terms
this question is related to the phenomenon of acoustic resonance in turbomachinery,
whereby such resonant modes are excited to large amplitude by unsteady processes
such as vortex shedding. We use the Wiener–Hopf technique to analyse the scattering
of the various wave fields by the cascade blades, and by considering the fields between
adjacent blades, as well as between the cascades, we are able to take full account
of the genuinely finite blade chords. Analytic expressions for the various scattering
matrices are derived, and an infinite-dimensional matrix equation is formed, which
is then investigated numerically for singularity. One advantage of this formulation
is that it allows the constituent parts of the system to be analysed individually, so
that for instance the behaviour of the gap between the blade rows alone can be
investigated by omitting the finite-chord terms in the equations. We demonstrate that
the system exhibits two types of resonance, at a wide range of parameter values.
First, there is a cut-on/cut-off resonance associated with the gap between the rows,
and corresponding to modes propagating parallel to the front face of the cascades.
Second, there is a resonance of the downstream row, akin to a Parker mode, driven at
low frequencies by a vorticity wave produced by trapped duct modes in the upstream
row, and at higher frequencies by radiation modes (and the vorticity wave) between
the blade rows. The predictions for this second set of resonances are shown to be
in excellent agreement with previous experimental data. The resonant frequencies
are also seen to be real for this twin cascade system, indicating that the resonances
correspond to genuine trapped modes. The analysis in this paper is completed with
non-zero axial flow but with zero relative rotation between the cascades – in Part 2
(Woodley & Peake 1999) we will show how non-zero rotation of the upstream row
can be included.

1. Introduction
The phenomenon of acoustic resonance in aeroengine compressors, in which un-

steady forcing provided by vortex shedding locks into a natural resonant mode of
the compressor to produce large-amplitude, potentially damaging, excitation has long
been known to occur, particularly on engine tests when the system is being run at
off-design conditions. In order to be able to predict these resonance, it is necessary
as a first step to calculate both the vortex shedding frequencies of the blade rows
and the natural resonant frequencies of the system; the former has been considered
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previously by the authors (Woodley & Peake 1997a,b), and the latter is the subject of
the current paper.

The problem of the acoustic resonance of a single blade row has received con-
siderable attention. Pioneering work was completed by Parker (1966, 1967), who
predicted numerically and verified experimentally the existence of trapped modes,
‘Parker modes’, in a single cascade of airfoils, and an extensive body of related
experimental work has been completed subsequently (see Parker & Stoneman 1989
for a review). In addition, Koch (1983) has repeated Parker’s analysis with non-zero
mean flow. Related to this issue, there has also been considerable interest in the
existence of water-wave trapping by rigid bodies (see Evans & Linton 1991), and of
acoustic waves trapping by obstacles in ducts (Evans & Linton 1994; Evans, Levitin
& Vassiliev 1994).

In a real compressor, the alternate rotating (rotor) and stationary (stator) blade
rows are positioned close together, with separations typically less than the blade chord
length. It therefore follows that although the isolated blade row resonances mentioned
above can occur, it seems very likely that strong coupling between adjacent rotor and
stator rows can lead to additional resonant states, with the interaction between the
rows mediated either acoustically or via the wake shed from the rotor row impinging
on the downstream stators. In this paper we therefore propose to address the question
of the existence of trapped modes for a two blade row system, and thereby extend
Parker’s original analysis.

In our model we assume, as is often the case in real compressor stages, that the
curvature of the duct passage is small, and hence we may ‘unwrap’ the blade rows
into two-dimensional cascades (for an annulus with inner and outer radii r1 and r2
respectively, we require that (r2 − r1)/r1 � 1). Furthermore, we shall suppose in the
first instance that the ‘rotor’ row is in fact not rotating relative to the stator row, and
this will not only allow our results to be compared closely with existing experimental
data, which seems to be almost exclusively restricted to this non-rotating case, but will
also allow the physical mechanisms causing the resonances to be clearly identified and
studied. The extension to include relative rotation introduces considerable complexity
into the problem, but the analysis will be presented here in such a way that this
extension can be made in a natural way, and will be described in Part 2 (Woodley &
Peake 1999). Also, we suppose here that the rotor and stator rows have equal blade
numbers, and the extension to unequal blade numbers will be included in Part 2.

The overall system under consideration is shown in figure 1. The labels An, Bn, Cn . . .
refer to the amplitudes of the various sets of waves which exist in the different regions
of the system. We will suppose that the blades are aligned at zero incidence to the
oncoming steady flow, so that the steady flow is uniform. In this non-rotating case it
follows that the rotor and stator rows have equal stagger angles, although their chord
lengths will be different. The radiation modes in the gap between the blade rows
are coupled by the scattering from the leading and trailing edges of the blades, thus
giving rise to a complicated mode interaction problem, which will be solved using
the Wiener–Hopf technique. The analysis follows closely that of Peake (1993), who
treated the forced problem of a single vorticity wave incident on the leading edge of
a single finite-blade cascade, and we shall keep the same notation as far as possible
here. Our aim here, however, is to find the resonant acoustic modes of the unforced
system. We note that earlier studies of the cascade problem, such as Koch (1971) and
references contained therein, have been made, and that the reflection and transmission
matrices applied in this paper have therefore appeared, in different contexts and in
differing forms, before.
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Figure 1. Twin finite-chord cascade system.

In view of the transverse periodicity of the system, we anticipate that the field in
the gap between the blade rows will take the form of upstream- and downstream-
travelling plane pressure (acoustic) waves, together with vorticity waves convected
with the mean flow from the trailing edge of the upstream blade row so as to
satisfy the unsteady Kutta condition there. Solution of the linearized Euler equations
shows that these are the only two types of waves which are relevant; a third type
of disturbance, entropy waves, does not lead to any fluctuations in the unsteady
velocity field for uniform mean flow, and need not be considered here. In what
follows we will non-dimensionalize all lengths by the blade-row gap g∗, velocities by
the mean-flow speed U∗∞ and densities by the undisturbed mean density ρ∞. We use
σ±n to denote the x-wavenumbers of the pressure waves in the gap (full expressions
will be given later, but we note here that the superfixes ± relate to upstream and
downstream propagating modes respectively), and Ω is the normalized frequency.
For the purposes of our analysis, we let Ω have a small negative imaginary part (so
that various Fourier integrals converge), which can be set to zero at the end of the
calculation. The corresponding y-wavenumbers are calculated using the dispersion
relation for sound waves in uniform compressible flow. Since the vorticity wave is
convected with the mean flow its x-wavenumber is also Ω. The unsteady field can be
described in terms of the velocity potential φ(x, y), with u = eiΩt∇φ, and it follows,
by summing over all the possible modes, that the unsteady field in the gap between
the blade rows can be written in the form

φ (x, y) =

∞∑
n=−∞

Ane
−iσ+

n x−iλ+
n y +

∞∑
n=−∞

Bne
−iσ−n x−iµ−n y + V e−iΩxf(y), (1.1)

where the An and Bn are the (unknown) amplitudes of the upstream- and downstream-
travelling pressure waves in the gap, and V is the (also unknown) vorticity wave
amplitude. The function f(y) in the vorticity wave amplitude can be simply obtained
by substituting the final term in (1.1) into the convected wave equation. The quantities
λ+
n and µ−n are the y-wavenumbers corresponding to the x-wavenumbers σ±n .
Our aim in this paper is to derive two sets of matrix equations relating the unknown

amplitudes An,Bn and V , in the absence of any external forcing such as incident sound
waves from upstream of the rotor row or downstream of the stator row. These matrix
equations will then be analysed for the existence of non-trivial, resonant solutions. In
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§ 2 we consider the scattering of the downstream-travelling pressure waves and the
vorticity wave by the stator, and thereby determine expressions for the An in terms of
the Bn and V . This calculation takes full account of the finite blade chord, which is
accomplished by considering the repeated scattering by the stator leading and trailing
edges, as in Peake (1993). In § 3 the scattering of the upstream-travelling pressure
waves is considered in much the same way, thereby yielding expressions for the Bn
and V in terms of the An. In § 4 the matching together of these two sets of results is
described, and in § 5 the numerical method used to search for resonance is outlined.
In § 6 full results are presented, and our predictions of resonant frequencies are seen
to be in excellent agreement with previous experimental work on resonance in tandem
blade rows. Broadly speaking, we identify two quite distinct types of resonance: one
in which a pressure wave in the gap between the blade rows is close to its cut-off
condition, and is therefore propagating in the transverse direction; and a second
corresponding to resonance of the downstream blade row driven by the vorticity
wave shed from the upstream blade row (this second resonance is akin to the original
Parker modes, but unlike those is not restricted to having an inter-blade phase angle
which is a multiple of π). A study of the effects of the various flow parameters on
these resonances is also presented.

2. Stator scattering
In this section we consider the scattering of pressure and vorticity waves from

upstream by the downstream (stator) blade row. We first analyse the initial scattering
by the leading edges, assuming a semi-infinite blade chord, and then second consider
the scattering of the resulting downstream-travelling duct modes between the blades
by the trailing edges. The trailing-edge scattering produces upstream-travelling duct
modes, which are in turn rescattered by the leading edges, and an infinite series of
repeated reflection and rescattering is set up. We will proceed to use our results to
derive a matrix equation relating the amplitudes of the duct modes in this infinite
reflection series, and thereby derive exact expressions for the scattering by the blade
row with a genuine finite chord.

2.1. Leading edge

We start by assuming that the stator blades are semi-infinite in the downstream
direction, and solve for the scattering of incident pressure and vorticity waves by the
leading edge. In effect we are thereby neglecting the effect of the upstream-travelling
duct modes with amplitudes Dn (see figure 1), but these will be included in the next
subsection. Since the system is periodic along the blade face, we concentrate on one
blade passage, and use the periodic boundary conditions to calculate the field in the
other blade passages.

Let φ0(x, y) be the scattered field in the zeroth blade passage 0 < y < s due to the
incidence of the downstream-travelling pressure and vorticity waves, with amplitudes
Bn for n = 0,±1,±2, . . . and V respectively (i.e. the second and third terms in equation
(1.1)), on the downstream blade row. By taking the half-range Fourier transform over
x > 0 of the condition of total zero normal velocity on the zeroth blade, we obtain
the equation

∂Φ+
0

∂y
(k, 0) +

iV

k − Ω +
∑
n

µnBn

k − σ−n = 0, (2.1)

where the superfix + indicates the transform over the positive semi-infinite x range.
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In deriving (2.1) we have used the fact that the frequency Ω and wavenumbers
σ−n possess negative imaginary parts, so that the various integrals converge, and in
addition a factor f′(0) has been absorbed into V . The scattered field must satisfy the
convective wave equation, and taking the full-range Fourier transform in x of this
equation yields

∂2Φ0

∂y2
+ γ2Φ0 = 0, (2.2)

where

γ2(k;Ω,M) = M2Ω2 − 2kM2Ω − β2k2 (2.3)

and β2 = 1 − M2. The dispersion function γ = γ(k;Ω,M) is defined by taking
branch cuts emanating from the points k = −MΩ/(1 −M) and k = MΩ/(1 + M)
and going to infinity through the upper and lower half-planes respectively, and with
γ(0, Ω,M) = +MΩ. We may then write down the general solution of (2.2) straightaway
in the form

Φ0 (k, y) = Ae−iγy + Beiγy. (2.4)

Owing to the transverse periodicity of the blade row geometry, it follows that the
unsteady fields must satisfy the periodicity condition

φN (x, y) = φ0 (x−Nd, y −Ns) eiNσ, (2.5)

where φN is the field in the Nth blade passage Ns < y < (N + 1)s, and σ is the
prescribed inter-blade phase angle. (Here we note that although the phase angle
is arbitrary for the purposes of this two-dimensional analysis, once we consider a
genuine unwrapped blade row the phase angle will be restricted to the discrete values
σ = 2nπ/NB for some integer n, where NB is the number of blades in the row, in
order to ensure periodicity around the annulus.) We now use this periodicity condition,
together with the condition that the scattered normal velocity must be continuous
across y = 0 for all x, to show that

Φ0 (k, y) = A
(
1− e−iσ−ikd−iγs

) [ e−iγy

1− e−iσ−ikd−iγs
+

eiγy

1− e−iσ−ikd+iγs

]
. (2.6)

We now turn our attention to the imposition of the condition of zero pressure jump
across y = 0 for x < 0. By taking the full-range Fourier transform of the linearized
Bernoulli relation between pressure and unsteady potential, and by applying the
periodicity condition, we find a relation between the unknowns A and [P (k, 0)]+−, the
Fourier transform of the pressure jump across x = 0, leading to

Φ0 (k, y) =
[P (k, 0)]+

−
2i (k − Ω)

[
e−iγy

1− e−iσ−ikd−iγs
+

eiγy

1− e−iσ−ikd+iγs

]
. (2.7)

We wish to find an expression for [P (k, 0)]+
− in terms of the incident pressure and

vorticity waves. The y-derivative of Φ0 is written as a sum of parts analytic in the
upper and lower halves of the complex k-plane as

∂Φ0

∂y
=
∂Φ+

0

∂y
+
∂Φ−0
∂y

, (2.8)

where we now have an expression for the left-hand side from (2.7) above. Using (2.8),
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and substituting for ∂Φ+
0 /∂y in (2.1), we get

[P0 (k, 0)]+
−

K (k)
− ∂Φ−0

∂y
+

iV

k − Ω +
∑
n

µ−n Bn
k − σ−n = 0, (2.9)

where the Wiener–Hopf kernel function K (k) is given by

K (k) = −2i (k − Ω)

γ sin (γs)
[cos (σ + kd)− cos (γs)] . (2.10)

The kernel K (k) is factorized into a product of functions analytic and non-zero in
the upper and lower half-planes, as

K (k) =K+ (k)K− (k) . (2.11)

On multiplying (2.9) through by K− (k) and performing an additive factorization
of two terms of the form K− (k)/(k − ν) for ν in the lower half of the k-plane, we
obtain an equation of the form F+(k) = F−(k), with the left- and right-hand sides
analytic in the upper and lower half-planes respectively. By analytically continuing
these functions we may define a function, F(k), which is analytic over the whole of the
complex k-plane, and it can then be shown that, due to the incompressibility of the
flow in the neighbourhood of the leading edge, F(k) decays algebraically to zero as
k →∞, and hence by Liouville’s Theorem that F(k) = 0 for all k. This then yields an
expression for the previously unknown [P0(k, 0)]+−, and substituting in (2.7) we obtain
an expression for the Fourier-transformed velocity potential as

Φ0 (k, y) =
K+ (k)

2i (k − Ω)

[
− iVK− (Ω)

k − Ω −∑
n

µ−n BnK− (σ−n )
k − σ−n

]

×
[

e−iγy

1− e−iσ−ikd−iγs
+

eiγy

1− e−iσ−ikd+iγs

]
. (2.12)

The factorization of K(k) may be carried out using infinite products, as described
in Peake (1993). This decomposition can be computed in a very efficient way using
Richardson extrapolation, as described by Majumdar & Peake (1996), and this
approach will be applied here as well.

We may now proceed to invert the spatial Fourier transform in order to determine
the scattered field φ0(x, y). The zeros of K(k) (and hence the poles of Φ0(k, y)) lie
at k = σ±n for n = 0,±1,±2, . . . in the upper and lower half-planes respectively, and
satisfy

γ(σ±n )s = ±(2nπ− σ − σ±n d) (2.13)

(unrelated plus and minus signs), leading to

σ±n =
d (2nπ− σ)−M2Ωs2 ∓S

d2 + s2β2
(2.14)

where

S2 = [s2
(
d2 + s2

)
M2Ω2 − 2dM2Ωs2 (2nπ− σ)− s2β2(2nπ− σ)2]

1/2
, (2.15)

and S = |S| when S2 > 0 and S = −i|S| when S2 < 0. The fact that Ω possesses
a negative imaginary part leads to σ±n being situated in the upper and lower halves of
the complex k-plane. However, we emphasize that the superfix ± on σ±n is unrelated
to the ± on the right-hand side of (2.13). For x < 0 we must close the inversion
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contour in the upper half-plane. The residue of the term in the second square brackets
in (2.12) at k = σ+

n is then given by

Res1σ+
n
(y) = − γ(σ+

n )

γ(σ+
n )d sin(σ + σ+

n d) + s(M2Ω + β2σ+
n ) sin γ(σ+

n )s

×[ 1
2
(eiσ+iσ+

n d − e−iγ(σ+
n )s)e−iγ(σ+

n )y + 1
2
(eiσ+iσ+

n d − eiγ(σ+
n )s)eiγ(σ+

n )y], (2.16)

where one of the terms in these square brackets must necessarily be zero, depending
on which sign is satisfied by γ(σ+

n ) in (2.13).
By comparing the results of this calculation with the expression for the field in the

gap between the blade rows given in (1.1), we may equate coefficients of exp(−iσ+
n x),

giving an equation for the coefficients of left-travelling radiation modes, An, in the
form

An =
K+

(
σ+
n

)
2
(
σ+
n − Ω

) × Res1σ+
n
(0)×

[
− iVK− (Ω)

σ+
n − Ω −∑

m

µ−mBmK− (σ−m)(
σ+
n − σ−m

) ]
. (2.17)

Note that the y-wavenumber µ+
n in (1.1) is equivalent to either ±γ(σ+

n ), again depend-
ing upon which sign in (2.13) is satisfied by that particular pressure mode.

We have thus determined the amplitudes An in terms of the unknown Bn and V ,
and at this stage we write down the coupling coefficients between the nth reflected
pressure wave and the mth incident pressure wave in the form

TPPmn = − K
+(σ+

n )

2(σ+
n − Ω)

× Res1σ+
n
(0)× µm

−K−(σ−m )

(σ+
n − σ−m )

, (2.18)

and the coupling coefficient between the nth reflected pressure wave and the incident
vorticity wave in the form

TVPn = − K
+(σ+

n )

2(σ+
n − Ω)

× Res1σ+
n
(0)× K̂

−(Ω)

(σ+
n − Ω)

. (2.19)

In the next subsection we extend these results to account for the finite stator blade
chord.

2.2. Trailing edge

In this subsection we will include the effects of the scattering of the duct modes
by the stator blade leading and trailing edges, and thereby extend the results in the
previous section to account for the genuine finite blade chord. The duct-mode field
in the stator blade passages may be obtained simply by solving the convective wave
equation with hard-wall boundary conditions, and may be taken straight from Peake
(1993) as

φ0 =

∞∑
n=0

Cne
ik−n d cos

(nπy
s

)
e−ik−n x +

∞∑
n=0

Dne
ik+
n c cos

(nπy
s

)
e−ik+

n x, (2.20)

where the x-wavenumbers are

k±n =
−M2Ω ∓T

1−M2
, (2.21)

where

T2 = M2Ω2 − (1−M2)
n2π2

s2
, (2.22)
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with T = |T| when T2 > 0 and T = −i|T| when T2 < 0. In (2.21) the distorted
vorticity wave, which does not contribute to the noise generation at the trailing edge,
has been omitted. The quantities k±n are the wavenumbers of the upstream- and
downstream-propagating duct modes respectively. The exp(ik−n d) and exp(ik+

n c) terms
in (2.21) are included to ensure that the amplitude coefficients decay algebraically as
n→∞. We may now write down a formal expression for the radiation field reflected
back upstream from the stator as

Am =
∑
p

TPPpm Bp + TVPm V +
∑
p

TDPpm Dp, (2.23)

where the coupling matrices TPP and TVP have already been calculated in the
previous subsection, and represent the generation of reflected pressure waves by the
scattering of incident pressure waves and vorticity waves from upstream, and the as
yet unknown coupling matrix TDP represents the scattering of upstream-travelling
duct modes at the stator leading edges.

Since we are supposing that there is no upstream-travelling radiation incident
on the stator trailing edge from downstream, it follows that the amplitudes of
the upstream-travelling duct modes, Cm, can be related to the amplitudes of the
downstream-travelling duct modes, Dm, by the expression

Dm =
∑
p

RDDpm Cp, (2.24)

for some reflection matrix RDD. This reflection matrix can be calculated by considering
the trailing-edge scattering, in much the same way as in the previous subsection, and
is given in Appendix A. The amplitudes Cm are themselves determined from the
incidence of the pressure waves, vorticity waves and upstream-travelling duct modes
on the leading edges of the stator cascade, and can be expressed in the form

Cm =
∑
p

TPDpm Bp + TVDm V +
∑
p

TDDpm Dp. (2.25)

Here, the coupling matrices TPD and TVD represent the scattering of the incident
upstream pressure and vorticity waves into downstream-travelling duct modes, and
TDD represents the scattering of upstream-travelling duct modes into downstream-
travelling duct modes at the leading edges. Again, these matrices can be determined
in much the same way as in the previous subsection, and full expressions are given in
Appendix A.

We now eliminate the Cm by substituting (2.25) into (2.24), and hence express Dm
in terms of the incident pressure and vorticity waves, and find that

∞∑
r=0

SprDr =

∞∑
q=0

RDDqp

[
TVDq V +

∞∑
r=−∞

TPDrq Br

]
, (2.26)

where

Spr = δpr −
∞∑
q=0

RDDqp T
DD
rq . (2.27)

Equation (2.26) above is now just a simple matrix equation for the vector D, and if
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[S−1]pr is the left inverse of Spr it follows that

Dm =

∞∑
p=0

[S−1]pm

∞∑
q=0

RDDqp

[
TVDq V +

∞∑
r=−∞

TPDqr Br

]
. (2.28)

Finally, by substituting D back into the right-hand side of (2.23), we find that the
amplitudes of the upstream-propagating pressure waves generated by the scattering
of incident downstream-propagating pressure and vorticity waves are given by

Am = TVm V +
∑
r

TPrmBr, (2.29)

where

TPrm = TPPrm + TPDPrm , TVm = TVPm + TVDPm , (2.30)

with

TPDPrm =

∞∑
p=0

TDPpm
∞∑
s=0

[S−1]sp

∞∑
q=0

RDDqs T
PD
qr , (2.31)

and

TVDPm =

∞∑
p=0

TDPpm
∞∑
s=0

[S−1]sp

∞∑
q=0

RDDqs T
VD
q . (2.32)

From (2.29) we see that TPP and TVPrepresent the contribution to the reflected
pressure waves from the direct scattering of incident pressure and vorticity waves
from upstream (as found in § 2.1), while TPDP represents the indirect scattering of
incident pressure waves into reflected pressure waves via the multiply-reflected duct
modes wave, and TVDP represents the indirect scattering of incident vorticity waves
into reflected pressure waves via the duct modes. It therefore follows that TPDP and
TVDP represent the corrections to the results derived in § 2.1 to account for the finite
blade chord.

3. Rotor scattering
In this section we will consider the scattering of the pressure waves which propagate

upstream in the blade-row gap by the rotors. We first consider the scattering by the
trailing edges alone with the rotor blades assumed to have a semi-infinite chord, and
then in § 3.2 include the effect of finite chord by considering the repeated reflections
and rescattering of the duct-mode field by the rotor-blade leading and trailing edges.
The analysis proceeds in much the same way as the stator calculations in the previous
section, and we therefore need give only the broadest outline of the method here.

3.1. Trailing edge

Let φ̂0 now be the scattered field due to the incidence of the upstream-travelling
pressure waves, amplitudes Ân n = 0,±1,±2, . . . , on the trailing edge of the upstream
blade row, where we use ˆ to denote rotor variables (the amplitudes Ân differ from
the amplitudes An in equation (1.1) by a simple phase shift arising from a change of
origin). The system is shown in figure 2, and we introduce the rotor-shifted coordinates
x̂ = x+ 1, ŷ = y. We must now apply the condition of zero total normal velocity on
the zeroth rotor blade ŷ = 0, x̂ < 0, with the scattered field satisfying the periodicity
condition (2.5), and with the unsteady pressure being continuous across the blade
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Figure 2. Rotor duct geometry and wave fields.

wake ŷ = 0, x̂ > 0. An additional feature not present in § 2.1 is that now an unsteady
Kutta condition of zero pressure jump at the trailing edge must be enforced.

The problem is again solved using the Wiener–Hopf technique, in much the same
way as in § 2 and as in Peake (1993), and we will therefore present just the results
of the analysis here. First, the Wiener–Hopf equation leads to an expression for the
Fourier transform of the unsteady pressure jump across the zeroth rotor blade in the
form

[P̂0 (k, 0)]+−
K− (k)

−∑
n

λ+
n Âne

iσ+
nK+

(
σ+
n

)
k − σ+

n

= 0, (3.1)

where now k is the transform variable corresponding to x̂. Second, it follows from
this that the solution for the transform of the unsteady potential in 0 < ŷ < s is

Φ̂0 (k, ŷ) =
K− (k)

2i (k − Ω)

[∑
n

λ+
n Âne

iσ+
nK+

(
σ+
n

)
k − σ+

n

]

×
[

e−iγŷ

1− e−iσ−ikd−iγs
+

eiγŷ

1− e−iσ−ikd+iγs

]
. (3.2)

The field scattered back into the gap can now be determined by inverting this
transform and closing the contour in the lower half of the k-plane. It is clear from
(3.2) that the transform possesses a pole at k = Ω, which will correspond to the
vorticity wave shed from the rotor trailing edge. The amplitude of this vorticity wave
is related to the amplitudes of the incident pressure waves via a coupling matrix T̂PVm ,
with the amplitude of the vorticity wave being∑

n

T̂PVn An. (3.3)

Using the residue theorem, it is easy to show from (3.2) that

T̂PVm = −ei(σ+
m−Ω)K−(Ω)λ+

mK+(σ+
m )

2(Ω − σ+
m )

[
1 +

i sin (σ + Ωd)

cos (σ + Ωd)− cos (γ (Ω) s)

]
. (3.4)



Resonant acoustic frequencies of a tandem cascade. Part 1 225

Furthermore, it also follows that the transform in (3.2) possesses poles at k = σ−n
n = 0,±1,±2, . . . , which correspond to the downstream-propagating pressure waves
in the gap between the blade rows. Again, the amplitudes of these scattered pressure
waves in terms of the amplitudes of the incident pressure waves can be expressed in
terms of the coupling matrix T̂PPpm ; the amplitude of downstream pressure mode n is

B̂n =
∑
m

T̂PPnm Âm, (3.5)

and it can be shown by again applying the residue theorem to (3.2) that

T̂PPnm = −ei(σ+
m−σ−n )K−(σ−n )

2(σ−n − Ω)
× Res2σ−n ×

λ+
mK+(σ+

n )

(σ−n − σ+
m )
, (3.6)

where

Res2σ−n = − γ(σ−n )

γ(σ−n )d sin(σ + σ−n d) + s(M2Ω + β2σ−n ) sin γ(σ−n )s

×[ 1
2
(eiσ+iσ−n d − e−iγ(σ−n )s) + 1

2
(eiσ+iσ−n d − eiγ(σ−n )s)]. (3.7)

As in § 2, one of the terms in square brackets in (3.8) will be zero, depending on the
precise value of γ

(
σ−n
)
.

3.2. Leading edge

Here we describe the corrections to the semi-infinite rotor cascade model, in very
similar terms to that for the finite-chord stator corrections of § 2.2. From figure 2 we
may immediately write down four equations defining the wave scattering by the rotor
with only pressure waves incident from downstream, and no incoming waves from
upstream.

In the notation of the figure,

B̂m =

∞∑
p=−∞

T̂PPpm Âp +

∞∑
p=0

T̂DPpm Ĉp, (3.8)

V̂ n =

∞∑
m=−∞

T̂PVm Âm +

∞∑
m=0

T̂DVm Ĉm, (3.9)

D̂m =

∞∑
p=−∞

T̂PDpm Âp +

∞∑
p=0

R̂DDpm Ĉp, (3.10)

Ĉm =

∞∑
p=0

T̂DDpm D̂p. (3.11)

Here, the coupling matrices T̂PVm and T̂PPnm , describing the direct scattering of
upstream-travelling pressure waves into downstream-travelling vorticity and pres-
sure waves, have already been derived in the previous subsection. The remaining
matrices describe the way in which the duct modes in the rotor blade passages are
scattered; T̂DVm is the coupling matrix for scattering of the mth downstream-travelling

duct modes into the vorticity wave, and T̂DPpm corresponds to scattering of the pth
duct mode into the mth downstream-propagating pressure wave. The amplitudes of
the duct modes themselves are expressed using (3.10) and (3.11); T̂PDpm describes the
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scattering of the pth upstream radiation mode into the mth upstream travelling duct
mode, R̂DDpm corresponds to the reflection of the pth downstream-travelling duct mode
into the mth upstream-travelling duct mode at the rotor trailing edges, and the matrix
T̂DDpm describes the coupling of upstream- and downstream-travelling duct modes at
the rotor leading edges. Expressions for all these matrices are given in Appendix B.

As was done for the finite-chord stator corrections, we may simply substitute
equation (3.10) into equation (3.11) and invert the left-hand side to give the expression

Ĉm =

∞∑
r=0

[Ŝ−1]rm

∞∑
p=0

T̂DDpr
∞∑

q=−∞
T̂PDpq Âq, (3.12)

where

Ŝ qm = δmq −
∞∑
p=0

T̂DDpm R̂
DD
qp . (3.13)

This may then be substituted into equations (3.8) and (3.9) to give the correction
matrices T̂PDP and T̂PDV, in the forms

T̂PDPpm =

∞∑
r=0

T̂DPrm X̂rp, (3.14)

T̂PDVm =

∞∑
r=0

T̂DVr X̂rm, (3.15)

where

X̂pr =

∞∑
s=0

∞∑
q=0

[Ŝ−1]spT̂
DD
qs T̂

PD
qr . (3.16)

We may now write down the corrected reflection matrices in forms similar to those
for the stator as

T̂Ppm = T̂PPpm + T̂PDPpm , (3.17)

and

T̂Vm = T̂PVm + T̂PDVm . (3.18)

Just as in (2.30), the first terms on the right-hand side correspond to the direct scat-
tering by the rotor trailing edges, and the second terms correspond to the corrections
to account for the finite rotor chord.

The analysis of the stationary twin cascade problem with finite-chord blades has
now been completed. We must next match the two wave fields across the inter-row
gap in order to find an overall matrix equation for the amplitude coefficients. In Part
2 we will describe how to include the effects of non-zero rotation on the rotor.

4. Rotor–stator matching
We now have an infinite system of linear equations for the amplitude vectors

A, B (coefficients An and Bn n = 0,±1,±2, . . . respectively), and the vorticity wave
amplitude V , of the form

An = TVn V +
∑
m

TPnmBm, (4.1)
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Bn =
∑
m

T̂PnmAm, (4.2)

V =
∑
n

T̂Vn An, (4.3)

where the summations run from −∞ to +∞. Expressions for all these matrices have
been derived in the previous sections.

It may be shown that the m–n elements of TPnm and T̂Pnm and the n elements of

TVn and T̂Vn decay exponentially as m, n → ∞, and so we may truncate the infinite
summations at some finite value, N say, and solve the resulting finite matrix system.
For convenience, we group the single V -term together with the B vector to form a
new vector B′, and we may thus write

An =

N+1∑
m=−N

T ′nmB
′
m, (4.4)

B′n =

N∑
m=−N

T̂ ′nmAm, (4.5)

where now B′n = Bn for n = −N . . . N, B′N+1 = V and the A vector is unchanged. The
new coupling matrices are now non-square and include a row for the vorticity wave
interaction:

T ′nm = TPnm, (4.6)

T̂ ′nm = T̂Pnm, (4.7)

for n, m = −N . . . N, and

T ′n,N+1 = TVn , (4.8)

T̂ ′N+1,m = T̂Vm . (4.9)

We now have a system of linear equations for the amplitude vectors A′ and B′, and
in particular we have the matrix equation

Ap =

N+1∑
m=−N

T ′pm
N∑

q=−N
T̂ ′mqAq. (4.10)

This can be expressed more clearly in the schematic form
 · · ·

... I
...

· · ·

−
 · · · · · ·

... T
. . .

...
· · · · · ·




· · ·
... T̂

...
...

...
...

· · ·





...
A
...

 = 0, (4.11)

where the asymmetric nature of the matrices arising from the inclusion of the vorticity
wave term becomes apparent. Defining a new matrix, Q = I − T · T̂ , we may write
the whole system as ∑

q

QpqAq = 0, (4.12)
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where

Qpq = δpq −
∑
m

T ′pmT̂
′
mq. (4.13)

We have thus defined a matrix equation for the unknown amplitude coefficients An.
In order to find a non-zero solution for this amplitude vector, and thus guarantee
by linearity a non-zero solution for the Bn, we simply need to find values of the
reduced frequency, Ω, such that the determinant of the matrix Q is zero, thus giving
the resonance points at which a non-zero acoustic field may exist. The method used
to determine such points and the results are described in the following sections.

5. Numerical methods
In this section we describe briefly the numerical techniques employed for determin-

ing the resonant modes of our system.
We first truncated the infinite-dimensional matrix equations to finite extent, as

described in the previous sections. Inclusion of all the cut-on modes and a limited
number of the cut-off ones would seem to be the best method here, and preliminary
investigation revealed that a truncation number of N = 4 was sufficient for most
cases.

Calculation of these resonance points for a wide range of parameters revealed
resonances only for nearly real values of Ω. Of course it should be remembered that,
mathematically, Ω must have a small negative imaginary part, so that the Fourier
transform integrals converge at infinity. Likewise it is convenient to retain this small
imaginary part for the numerical solution, so that we may distinguish the σ±n roots
from each other in a consistent way. However, by setting the imaginary part to be
successively smaller and smaller, we may identify the convergence point for zero
imaginary part. Furthermore, on setting the imaginary part to the same magnitude
as the machine precision, we allow ourselves to maintain the conditions described
above, but to have no noticeable effect on the precision of the results. It therefore
follows that the twin cascade resonances described in this paper correspond to genuine
trapped modes with real frequency. From here on we use the notation Ω = Ωr + iΩi
to represent the real and imaginary parts of the frequency.

In practice, due to the non-dimensionalization used here, that is using the flow
speed, U∗∞, rather than the sound speed, a∗∞, as our reference speed, and the fact that
a non-zero vorticity wave amplitude can exist only for M > 0, the problem becomes
singular for M = 0, and we must use a small but finite M to check zero flow results.
In this case we use a small but finite flow speed, typically in the range 0.01 6M 6 0.1
and retain some finite negative imaginary part of Ω, depending on the flow speed.
Koch (1983) found that for a cascade the imaginary part of the frequency is typically
around 3% of the size of the real part for M = 0.1, and we used this as an initial
estimate for finding our resonant frequencies.

In order to determine the values of Ω for which the matrix Q becomes singular,
it is unfortunately not feasible to use the zero determinant condition, since it is
quite possible, due to rounding error, to have matrices with very small determinants
which are far from singular, and likewise to have matrices with numerically O(1)
determinants that are in fact singular. Instead, we adopt the most widely used
alternative method of singular value decomposition (SVD), see for instance Golub &
Van Loan (1996) or Stoer & Bulirsch (1980). Essentially, SVD factorizes a matrix A
into a product of two orthogonal matrices, U and V , and a real diagonal matrix, D ,
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the entries of which are the ‘singular values’ of A, and the condition number of A is
defined as the ratio of the largest and smallest singular values. Formally, a matrix is
singular if its condition number is infinity, but for numerical purposes can be taken to
be singular if its condition number is greater than the reciprocal of ‘machine precision’
(typically around 10−15.) Even here, it is often quite difficult, due to truncation and
round-off errors earlier in the computation, to achieve this level of singularity, and a
more useful test of whether a matrix is singular is to determine whether its condition
number is greater than the reciprocal of some norm of the expected error in the
matrix. For example, if the entries of the matrix can be calculated to a precision of
10−4, then the matrix can be considered singular if its condition number is greater
than 10000. For our purposes, this is a most important point, as each element of our
coupling matrices is the result not only of a large number of algebraic operations,
but also of an infinite product calculation in determining the Wiener–Hopf factors,
and therefore is highly unlikely to be accurate to machine precision.

It is clear from the above comments that the formal and rigorous proof of the
existence of resonant states in our system cannot be achieved numerically. However,
we suggest that if the matrix is close to singularity at some set of parameter values,
then it indicates that even if the system does not have a perfect resonance at this
point it is at least very close to resonance, and may resonate either by detailed fine
tuning of some parameters, or by inclusion of some additional small feature not
considered in this model. In other words, the prediction of most practical interest is
to determine ranges of parameters for which the system is susceptible to the excitation
of acoustic resonance. From now on we shall therefore use the word ‘resonance’ in
conjunction with acoustic modes to denote a situation where the numerical system
displays behaviour which is significantly closer to singularity than that found over
the majority of the rest of the parameter range, and this distinction will become more
apparent in the next section, where we show the results of the numerical investigation.
Despite our reliance on the condition number, we will also check that the matrix
determinant is genuinely small at resonance, in order to eliminate those situations
where the condition number is large due not to a zero eigenvalue but due to one very
large eigenvalue.

6. Results
6.1. Preliminary results

As a way of checking most of our numerical and analytical routines, we look for
resonances of the single cascade systems investigated analytically by Koch (1983)
and Peake (1993) and experimentally by Parker (1966). By setting the amplitude
of the vorticity wave incident on the stator to zero in our analysis, we may look
for resonances of the pressure field, which should correspond exactly to the Parker
modes. Parker studied an unstaggered single cascade system and found, by experiment
(Parker 1966) and numerical (Parker 1967) means, four modes: the α and β modes
with σ = π, and the γ and δ modes with σ = 2π. Our calculations of the resonant
frequencies of this system are given in table 1, and clearly show excellent agreement
with the original findings.

6.2. General effects

We start with a sample configuration used by Legerton (1992) to generate Figure 5.30
therein, and look at the effects of finite blade chord, matrix truncation number and
imaginary part of frequency. He performed wind tunnel experiments on a twin annular
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Mode Parker Exp. Parker Num. Wiener–Hopf

α 0.92 0.94 0.929
β 0.494 0.52 0.497
γ 0.747 0.753 0.745
δ 0.582 0.575 0.573

Table 1. Comparison of Wiener–Hopf resonance frequency calculation with those of
Parker (1966, 1967).
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Figure 3. Reciprocal condition number, Rcond(Q), against real part of frequency, Ωr , for
semi-infinite (solid) and finite (dotted) blades, showing the frequencies at which the σ0, k1 and
σ1 modes cut on.

rig, with 15 thick, unstaggered blades on each row, inter-blade-row gap of 35 mm,
rotor chord 70 mm, stator chord 40 mm and flow speeds from 0 to around 50 m s−1.
This gives non-dimensional parameters c = 1.143, ĉ = 2, g = 1 and ∆ = 1.216 (where
∆ is the non-dimensional leading-edge separation). Since our present method is not
really suitable for zero stagger (this is because Peake’s 1992 calculations rely on
splitting up the blade chords into portions which overlap with adjacent blades – an
equivalent formulation with d = 0 could easily be derived), we use small but finite
stagger, typically α = 0.45π. Similarly, we use M = 0.1 in most cases for our flow Mach
number, and look at the azimuthal mode number m = 4, giving an inter-blade phase
angle of σ = 8π/15. All results in this section use these parameters, or small changes
to them which are noted at relevant points in the text. Throughout, we show Ω as the
independent variable, although it should be noted that in many cases MΩ is a more
appropriate measure of the reduced frequency, due to our non-dimensionalization.
However, we shall retain the use of Ω on its own since later we shall go on to look
at how changes in Mach number can cause resonances to appear, and consequently
need to have different Mach number lines on the same graph.



Resonant acoustic frequencies of a tandem cascade. Part 1 231

We first look at twin semi-infinite blade and twin finite blade systems, as the
comparison between these two situations will be useful later on in deducing the
relevant driving mechanisms for the resonances. Figure 3 shows the general type of
situation encountered and shows the difference in behaviour between the finite blade
and semi-infinite blade cases.

For the semi-infinite blade case, shown as a solid line, there are two distinct
resonance points, at Ω ≈ 13.5 and Ω ≈ 38, corresponding to the frequencies at which
the σ±0 and σ±1 modes cut-on respectively. These may be shown to be the Tyler–Sofrin
‘spinning modes’ (Tyler & Sofrin 1962), where a mode that is just cut-on propagates
parallel to the blade face. It will be shown later in this section that the minimum of
the reciprocal condition number may be forced as low as required within the bounds
of numerical error, simply by increasing the frequency resolution. However, for the
finite blade case (dotted line), things are somewhat different; we found that although
the finite system seems to exhibit some excitation close to these Tyler–Sofrin mode
resonance points, the finite chord effects ‘detune’ the resonance slightly. The other
excitations seen in figure 3 at Ω ≈ 9.2, 10.0, 12.6 and 38.5 are associated with the
finite blade chord and will be considered in more detail later. We emphasize again
that the imaginary part of Ω can be forced as close to zero as required, and this
means that the twin cascade resonances found in this paper correspond to genuine
trapped modes.

6.3. Finite blade effects

We now go on to show some more details of the system’s behaviour, starting with the
effects of finite blade chord on the resonance points. We find a range of resonance
types, each associated with different aspects of the system. First of all there are the
Tyler–Sofrin spinning mode resonances, of the form seen above, which are associated
with the gap between the blade rows and are relatively unaffected by changes in blade
chord. Then there are other resonance-like events, the occurrence of which displays a
strong dependence on which of the finite or infinite blade chord models is used. This
variation in behaviour can be clearly seen in figure 3, where we see that for a range
of frequencies there exist slightly different resonant (or near-resonant) frequencies,
depending on whether the blades are finite or not.

Careful examination of all our data revealed that for the twin semi-infinite blade
cases, resonances may only occur at frequencies at which one of the σ±n modes
changes from cut-on to cut-off in the gap, i.e. σ+

n = σ−n for some n. At first sight
this may seem obvious, for this corresponds to the case where there is a standing
wave in the gap between the blade rows – a left-travelling σ+

n wave and an equal
right-travelling σ−n wave. However, this is misleading, as the coordinates are aligned
along the blade chords, not in blade face coordinates, and hence the y dependence
of these waves is slightly different. Evaluation of the wavenumbers in the blade face
coordinates x̃ and ỹ, parallel and perpendicular to the blade row face shows that the
resonant modes are just the Tyler–Sofrin spinning modes, which travel up and down
the gap in the ỹ-direction, with no group velocity component perpendicular to the
blade row face. To calculate these frequencies we simply need to solve the equation
σ+
n = σ−n for Ω. Substituting the expressions for σ±n (2.14) and solving for Ω, we

get

Ω = ±cos α

∆
(2nπ− σ)

[
1±

{
1 +

(
1

M2
− 1

)(
1 + tan2 α

)}1/2
]
, (6.1)
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Figure 4. Reciprocal condition number, Rcond(Q), against real part of frequency, Ωr , for
semi-infinite (solid) and finite (dashed) blades. The arrow indicates where σ0 is first cut on.

where the ± signs are unrelated, giving four possible frequencies, only two of which
will be positive.

Figure 4 shows a higher-resolution view of the Tyler–Sofrin-type resonance point
at Ω = 13.5, for the semi-infinite blade case, showing that the reciprocal condition
number has a sharp cusp as one refines the frequency step resolution. This cusp may
be forced even lower by greater increases in frequency resolution, but introduction
of finite blades damps out this resonance and ‘smooths off’ the cusp. This could
be due to the interaction of the k±0 duct modes with the rotor leading and stator
trailing edges, causing energy to be scattered back into the inter-blade-row gap, and
cancelling with some of the waves there, or could be due to the stator trailing-edge
vorticity wave extracting energy from the resonant field. The main point to note is
that a Tyler–Sofrin-type spinning mode resonance exists for twin semi-infinite blade
systems, but introduction of finite blades detunes this Tyler–Sofrin resonance, leaving
just a small range of the reduced frequency where the system can be regarded as in
a more exited state than elsewhere.

Figures 5 and 6 show the relative effects of taking either the stator (figure 5) or
rotor (figure 6) to have a semi-infinite chord, with the other blade row finite. We
can clearly see that introduction of a semi-infinite stator changes the behaviour quite
significantly at high frequencies, but has less of an effect at low frequency, although
both cases have two Tyler–Sofrin-type excitations at Ω≈ 13.5 and Ω≈ 38. In the
twin finite case we have three finite-chord-type resonance points at low frequencies,
Ω≈ 9, 10 and 12.5, and one at higher frequency, Ω ≈ 36, whereas with a semi-infinite
stator, we have only two finite-chord resonance points at low frequencies, Ω ≈ 10
and 11.5. The major effect of neglecting the stator trailing edges then is to remove
high-frequency resonances, indicating that these are resonances of the stator, possibly
driven by the rotor vorticity wave.

In contrast, figure 6 shows that assuming a semi-infinite rotor chord has relatively
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Figure 5. Reciprocal condition number, Rcond(Q), against real part of frequency, Ωr , for
finite–infinite (solid) and finite–finite (dotted) blades. The arrows indicate where σ0 and then
σ1 are first cut on.
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Figure 6. Reciprocal condition number, Rcond(Q), against real part of frequency, Ωr , for
infinite–finite (solid) and finite–finite (dotted) blades.

little effect at high frequencies, but more at low frequencies. We have the same three
finite-chord resonances as above, at Ω ≈ 9, 10 and 12.5, but all are destroyed by the
removal of rotor leading-edge effects. This would appear to be due to the fact that
for the high-frequency resonance at Ω ≈ 38 there are propagating radiation modes
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Figure 7. Surface plot of the logarithm of the reciprocal condition number, log10 Rcond(Q), as a
function of mean flow Mach number, M, and scaled frequency, MΩ.

in the gap, giving a mechanism for the generation of vorticity waves from the rotor
trailing edge. At low frequencies, however, all the radiation modes are cut-off in the
gap, so that the only way of producing vorticity waves is by downstream-travelling
duct modes incident on the rotor trailing edge. Obviously this can only happen
with a finite-chord rotor, since this is the only way that a non-zero field can be
trapped in the rotor. In these low-frequency resonance cases, the rotor seems to play
a relatively unimportant role, other than the requirement that it be finite; we found
that changing the rotor chord length slightly merely alters the resonant frequency,
whereas introducing a semi-infinite rotor destroys the resonance point completely.

In figure 7 we see that small changes in the mean flow Mach number in this case can
have a significant effect on the resonance behaviour. Note that the vertical axis shows
the quantity MΩ, rather than Ω now, as this quantity remains relatively unchanged as
M varies, allowing easier visualization of the features on the graph. We can see that
there are two regions of reasonably robust excitation, at MΩ ≈ 1.0 and MΩ ≈ 1.26,
that persist throughout the range of M considered, with sharp resonances at certain
points along the range, for example for MΩ ≈ 1.26, resonances at M ≈ 0.03, 0.05
and 0.07. Isolated resonances exist at other points. From this graph we see that the
non-resonant excitation points may be forced into resonant conditions by changes
in the flow speed. In fact, we found that this resonance ‘tuning’ may be done by
varying any one of the system parameters, such as blade chord, but for our purposes
changing the Mach number seems to be more physically realistic. For example, at
M ≈ 0.1, there is a resonance point for MΩ ≈ 1.01, but at no lower frequencies,
whereas at M ≈ 0.09 there is a new resonance point at MΩ ≈ 0.92, and the reciprocal
condition number at MΩ = 1.01 is not as low as it is at M = 0.1. Further refinements
in resolution reveal the new resonance to be at M = 0.08742, MΩ = 0.9267, with a
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Figure 8. Relative mode amplitudes, An and Bn for Ωr = 34.59. The left-travelling wave mode
amplitudes, shown in dashed lines, represent the magnitude of the An, −4 6 n 6 4, and the
right-travelling waves, shown in solid lines, denote the magnitude of the Bn, −4 6 n 6 5, where B5

represents the vorticity wave amplitude.

reciprocal condition number of 6.4 × 10−5. This value may be forced even lower by
further increases in Mach number/frequency space resolution.

These low-frequency resonances, at MΩ ≈ 0.92, 1.01 and 1.26, occur under condi-
tions where all modes except the k±0 duct modes are cut-off, and seem to correspond
to Parker-mode-like resonances of the stator, excited by the incident vorticity wave
shed by the rotor. Although true Parker modes require a phase angle of nπ between
blades, this is only necessary to provide a resonant mode at all geometry and flow
conditions, as imposing this angle ensures that the zero normal velocity condition
on the blade is satisfied. For other phase angles we can still have a resonant mode,
but may need certain combinations of blade row geometry, mean flow etc. to satisfy
the normal velocity boundary conditions. This Parker-mode-like behaviour is further
confirmed by determining the Parker frequency (with phase angle σ = π, as for a
Parker α or β mode) for the stator in isolation, as in § 6.1. We found a resonance
point with frequency Ωr = 18.6, giving good agreement with our calculated Parker
α-mode frequency for the stator, Ωr = 17.9, indicating that this is probably the physi-
cal mechanism present, with a small change due to the vorticity wave incident on the
stator. The reason for this would appear to be that since all the radiation modes are
cut off, the vorticity wave in the gap must be caused by downstream-travelling duct
modes incident on the rotor trailing edge. Since there is no energy entering the system
from upstream of the rotor, these downstream-travelling duct modes can only arise
due to the incidence of upstream-travelling duct modes on the rotor leading-edge
region. The resonance thus takes the form of re-reflecting k±0 duct modes in the rotor
generating vorticity waves to drive a Parker-mode-like resonance of the stator.

We repeated the above investigation for higher-frequency modes, where there exist
several cut-on modes; we found that the excitation at Ω ≈ 38 can be ‘tuned’ into
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Figure 9. Resonance frequencies for the experimental setup of Legerton (1992) (solid lines) and
Wiener–Hopf theory (dotted).

a resonance by increasing the mean flow Mach number to M = 0.1067, giving a
sharp resonance point at Ωr = 34.59, with Rcond(Q) ≈ 2 × 10−5. The resonance
field here does not appear to have a simple form, and involves both the cut-on σ+

0

and σ−0 radiation modes, allowing energy to be transmitted between the blade rows.
At this resonant point, we may solve for the eigenvector corresponding to the zero
eigenvalue and hence find the modeshape. Figure 8 shows the amplitudes An and Bn
of the radiation modes in the gap, for N = 4. In this case, although only the σ±0
modes are cut-on, the amplitudes of many of the cut-off modes are still relatively high.
We see that the vorticity wave amplitude is much smaller than the radiation mode
amplitudes, indicating that in this high-frequency case it is probably the pressure wave
reflection between the blade rows that is the dominant source of the resonance, rather
than the vorticity wave driving a Parker mode of the stator as in the low-frequency
resonance cases discussed above.

6.4. Comparison with experiment

To enable comparison with other results, bearing in mind the above comments
regarding resonances not occurring at all flow conditions, we use graphs of the form
shown in figure 7, thus giving an instant picture of which flow conditions are likely to
be close to a resonance point. We now turn to the experimental results of Legerton
(1992) and present some theoretical predictions calculated from our analysis for
comparison with his experimental data.

Legerton’s experimental setup consisted of two stationary annular blade rows, each
with 15 fairly thick unstaggered blades, in a wind tunnel at speeds around 50 m s−1.
The experimental data were taken from the g∗ = 35 mm graph of Figure 5.30 in
Legerton (1992), and comparison with our Wiener–Hopf predictions are shown in
figure 9, for five different circumferential mode numbers. For the Wiener–Hopf theory
predictions we took the lowest-frequency resonance point we could find that occurred
reasonably consistently across the flow speed range considered, so for the case in
figure 7 we took MΩ = 1.01, and not the lower isolated frequencies of around
MΩ = 0.92 that are clearly present in that figure. The Wiener–Hopf theory shows
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excellent agreement with the experimental measurements, with errors of less than 4%
for all but the lowest mode number, where the prediction is around 12% too low. We
expect the lowest mode, with the longest azimuthal wavelength, to be most affected
by our assumption of small annulus curvature, but even so the agreement is still
reasonable at this low frequency.

The differences between our Wiener–Hopf predictions and the experimental results
could be quite easily accounted for by the thickness of the blades, the blockage ratio
being around 9% for the mid-radius station we took for our cascade unwrapping,
and by the large curvature of the annulus; Legerton’s annulus has inner and outer
radii of 75 mm and 127 mm respectively, and for our calculations we simply took the
average of R = 101.6 mm as our reference radius. Related to this, we should mention
that many of the resonances shown here are at points close to, but not actually
at, a cut-on/cut-off condition, which has been shown Majumdar & Peake (1996) to
be a situation where three-dimensional effects become important. Even so, the good
agreement between the cascade theory and annular experiment gives considerable
confidence in the validity of the approach adopted in this paper.

7. Conclusions
We have found the exact solution to the problem of acoustic scattering in a system

consisting of two stationary, finite-chord blade rows in non-zero axial flow, using the
Wiener–Hopf technique. A number of resonant states have been identified, and it is
again emphasized that these occur for frequencies with a (to the level of numerical
accuracy) zero imaginary part, and therefore correspond to genuine trapped modes.
This is in contrast to the single cascade with axial flow, in which Koch (1983) showed
that the Parker resonances are damped.

One of the most important features of our system is the fact that the blade chords
are genuinely finite, and as we saw in figures 3, 5 and 6, this can have different
effects depending on the frequency. For the twin semi-infinite blade systems, the only
resonances are seen to be the Tyler–Sofrin spinning modes, at the points where a
radiation mode changes from cut-on to cut-off in the inter-blade-row gap. However,
these resonances are ‘smoothed off’ by the introduction of finite blade chord effects,
to give a relatively small reciprocal condition number which cannot be forced lower
by increases in frequency step resolution. Even so, the system can then be regarded
as being close to an excited state, and experience showed that it can often be ‘tuned’
into a sharp resonance by changes in the flow or geometry parameters.

As well as these cut-on/cut-off resonances, however, the genuine finite-chord system
has been seen to possess resonant modes of its own, akin to a Parker-mode resonance
of the stator, the driving mechanism of which depends on the frequency. At low
frequencies, where all radiation modes are cut-off, the sole resonance mechanism
appears to be the trapped duct waves in the finite-chord rotor generating vorticity
waves to drive a stator Parker mode. This is demonstrated by the fact that using a
semi-infinite rotor in our calculations eliminates the resonance. At higher frequencies,
the Parker-mode-type resonance is driven by either the vorticity wave or by the (now
cut-on) downstream-propagating pressure waves from the rotor. In this case, the cut-
on radiation modes in the gap provide a means of energy transmission downstream
of the rotor, and we find that we do not need a finite-chord rotor to obtain these
resonances.

Clearly, finite-chord effects have a large role to play in determining the possible
resonances of a twin cascade system. Although resonances may be excited with twin
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semi-infinite cascades, the reflection effects introduced by using, for example, a finite-
chord stator, can generate more system excitation than would be seen otherwise,
even if we are not actually at a resonance condition. As shown in figure 7, small
changes in mean flow speed or other parameters may shift the system into a resonant
state at some distinct frequency. Fortunately, there would appear to be only certain
combinations of parameters that give a resonance; for any given situation, there is
not necessarily a resonant frequency. The resonant conditions thus define a path in
parameter space for the system. If the system state lies on this path there is at least
one resonant frequency of the system, and for states close to the path, the system may
be regarded as close to resonance and very sensitive to changes in flow or geometry
parameters. The results presented here for the resonant frequencies can be combined
with predictions of the vortex-shedding frequencies of the blade rows, in order to
predict the possible onset of acoustic resonance. In practical systems, the rotor will
of course rotate relative to the stator, and in Part 2 we will show how the analysis
presented here can be extended to include non-zero relative rotation.

The authors are grateful for financial support provided by EPSRC and Rolls-Royce
plc, and to Dr A. B. Parry for helpful conversations.

Appendix A. Stator transmission matrices
In this Appendix we simply state expressions for the various duct-mode reflection

matrices described in § 2.2.
The reflection matrix RDDpm is very similar to that given in Peake (1993), and may

be written as

RDDpm =
iεme−ik−p (c−d)(1− ei(σ+k+

md+mπ))(1− e−i(σ+k−p d+pπ))(k−p − Ω)

s
(
k+
mβ

2 +M2Ω
)K+

(
k+
m

) (
k−p − k+

m

)K− (k−p ) , (A 1)

where as in Peake (1993), εm = 1 for m 6= 0 and ε0 = 1
2
, but we have an extra

exp (ik−p d−ik−p c) term due to our different length scale used for non-dimensionalization.
Likewise, two transmission matrices may be taken from equation (3.18) of Peake (1993)
as

TDDpm = − iεmei(k+
p c−k−md)(1− ei(σ+k−md+mπ))(1− e−i(σ+k+

p d+pπ))
(
k+
p − Ω

)
s
(
M2Ω + β2k−m

) (
k−m − k+

p

)K+
(
k+
p

)K− (k−m) , (A 2)

and

TVDm =
εme−ik−md(1− ei(σ+k−md+mπ))K−(Ω)

s(M2Ω + β2k−m )K−(k−m )(k−m − Ω)
. (A 3)

Further consideration of equation (3.18) of Peake (1993) allows us to write down the
equivalent pressure matrix as

TPDpm = − iεmµ
−
p e−ik−mdK−(σ−p )(1− ei(σ+k−md+mπ))

s
(
M2Ω + β2k−m

)K− (k−m) (k−m − σ−p ) . (A 4)

To find TDPpm we must return to equation (3.23) of Peake (1993), where closing the
integration contour in the upper half-plane gives the expression

TDPpm = − K
+
(
σ+
m

)
2
(
σ+
m − Ω

) × Res1σ+
m
× (k+

p − Ω)(1− e−i(σ+k+
p d+pπ))eik+

p c(
σ+
m − k+

m

)K+
(
k+
p

) , (A 5)

where Res1
σ+
m

is defined in § 2.1.
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Appendix B. Rotor transmission matrices
In this Appendix we present the expressions for the coupling matrices used in the

rotor scattering calculations. We may take two of the matrices straight from Peake
(1993) as

T̂DDpm = − iεmei(k+
p ĉ−k−md)(1− ei(σ+k−md+mπ))(1− e−i(σ+k+

p d+pπ))(k+
p − Ω)

s
(
M2Ω + β2k−m

) (
k−m − k+

p

)K+
(
k+
p

)K− (k−m) , (B 1)

and

R̂DDpm =
iεmeik−p (ĉ−d)(1− ei(σ+k+

md+mπ))(1− e−i(σ+k−p d+pπ))
(
k+
m − Ω

)
s
(
M2Ω + β2k+

m

) (
k−p − k+

m

)K+
(
k+
m

)K− (k−p ) . (B 2)

Here the quantity ĉ corresponds to the normalized rotor blade chord, which can differ
from the normalized stator chord c.

Inspection of equation (3.44) of Peake (1993) reveals that closing the inversion
contour in the lower half-plane gives pole contributions at k = Ω and at k = σ−m , thus
yielding the vorticity and pressure wave amplitudes from the duct mode scattering at
the trailing edge. After some manipulation we may write these down in the forms

T̂DVm =
e−ik−m ĉ(1− e−i(σ+k−md+mπ))K− (Ω)

2K− (k−m) , (B 3)

and

T̂DPpm =
K̂− (σ−m)

2
(
Ω − σ−m

) × Res2σ−m × e−ik−p ĉ(k−p − Ω)(1− e−i(σ+k−p d+pπ))

2K− (k−p ) (k−p − σ−m) . (B 4)

The only remaining unknown is now T̂PDpm , which we can obtain by taking equation
(3.2) from Peake (1993) and, after rewriting the kernel function as in equation (3.14)
of Peake (1993), closing the inversion contour in the upper half-plane. We pick up
contributions from the poles at k = k+

m , and eventually may write the transmission
matrix as

T̂PDpm =
iεmλ

+
p e−ik+

mdK+(σ+
p )(1− ei(σ+k+

md+mπ))

s
(
M2Ω + β2k+

m

)K+
(
k+
m

) (
k+
m − σ+

p

) . (B 5)
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